Monthly load factor (LF) data for the years starting with 2020 are from IAEA - Power Reactor Information System (PRIS) and for the earlier years 2003 to 2019 from INFN Antineutrinos. If selecting the "Use IAEA LF Data" (default) option, the thermal power is averaged over the selected Year-Month range.
Filter Cores by Name or Type (PWR, BWR, PHWR, GCR, LWGR, FBR, LEU_MOX)
The non-oscillated fluence spectrum of neutrinos of a given species
While distance D = 10 kpc is fixed, the default values for
Oscillation effects depend on the neutrino mass ordering (A.S. Dighe and A.Y. Smirnov (2000), Identifying the neutrino mass spectrum from a supernova neutrino burst, Phys. Rev. D 62, 033007).
For normal ordering (NO) with
For inverted ordering (IO) with
The relatively high energy, large fluence, and short duration of the CCSN neutrinos allows consideration of several reactions not presented elsewhere on this site. On this tab, in addition to pIBD and eES, we present cross section plots and event totals for pES, 16O IBD, 12C IBD, and CEvNS. While the cross sections for CEvNS and pES are calculated internally using the estabished code for two-body elastic scattering (e.g. eES), the calculations of the cross sections for 16O IBD and 12C IBD are not conducive to online execution. For the 16O IBD cross sections we use parameterized fits (with threshold energies slightly larger than the excitation energies of each of four excitation groups- from K. Nakazato, T. Suzuki and M. Sakuda (2018), Charged-current scattering off the 16O nucleus as a detection channel for supernova neutrinos, Prog. Theor. Exp. Phys., 123E02). For the 12C IBD cross sections we use the fits to calculated values (E. Kolbe, K. Langanke and P. Vogel (1999), Weak reactions on 12C within the continuum random phase approximation with partial occupancies, Nucl. Phys. A 652, 91-100) as found on the SNOwGLoBES site.
N0 | NNO | NIO | ||
---|---|---|---|---|
ν̅e + p | 274.4 | 296.9 | 342.3 | |
νe + 12C | 2.1 | 16.3 | 12.2 | |
ν̅e + 12C | 7.2 | 10.5 | 17.2 | |
νe + 16O | 0.6 | 8.5 | 6.2 | |
ν̅e + 16O | 2.8 | 4.6 | 8.3 |
N(νe) | N(ν̅e) | N(νx) | N(ν̅x) | Ntot | |
---|---|---|---|---|---|
ν + e- w/o Osc | 2.46 | 1.05 | 0.78 | 0.72 | 5.01 |
ν + e- w/ NO Osc | 2.48 | 1.05 | 0.78 | 0.72 | 5.04 |
ν + e- w/ IO Osc | 2.48 | 1.06 | 0.78 | 0.72 | 5.03 |
ν + p | 63.2 | 75.0 | 185.0 | 184.6 | 507.8 |
N(νe) | N(ν̅e) | N(νx) | Ntot | |
---|---|---|---|---|
Xe Events | 3.54 | 4.25 | 21.23 | 29.02 |
N(νe) | N(ν̅e) | N(νx) | |
---|---|---|---|
124Xe | 0.00 | 0.00 | 0.02 |
126Xe | 0.00 | 0.00 | 0.02 |
128Xe | 0.06 | 0.08 | 0.38 |
129Xe | 0.89 | 1.07 | 5.35 |
130Xe | 0.14 | 0.17 | 0.84 |
131Xe | 0.75 | 0.89 | 4.47 |
132Xe | 0.96 | 1.16 | 5.78 |
134Xe | 0.39 | 0.47 | 2.33 |
136Xe | 0.34 | 0.41 | 2.05 |
Parameterized depth spectra of the total cosmic-ray muon flux and the associated neutron flux on the Earth are presented following equations given in D.-M. Mei and A. Hime (2006), Muon-induced background study for underground laboratories, Phys. Rev. D 73, 053004. The calculator and the plot below give the total muon flux (Eq. 4) and the neutron flux emerging from the rock into the underground cavern (Eq. 13) as a function of the equivalent flat overburden.
Muon Flux (m-2s-1) | Neutron Flux (m-2s-1) |
---|---|
0.0060385 | 0.00040085 |
Muon flux (m-2s-1) | Depth 1𝜎 (km.w.e.) | Neutron flux 1𝜎 (m-2s-1) | |
---|---|---|---|
WIPP1 | (4.77±0.09)e-3 | 1.582-1.597 | (3.36-3.46)e-4 |
Canfranc2 | (4.29±0.17)e-3 | 1.616-1.647 | (3.08-3.25)e-4 |
Boulby3 | (4.09±0.15)e-4 | 2.783-2.829 | (4.53-4.86)e-5 |
LNGS4 | (3.35±0.03)e-4 | 2.925-2.936 | (3.86-3.92)e-5 |
Pyhäsalmi5 | (1.1±0.1)e-4 | 3.608-3.732 | (1.20-1.43)e-5 |
SURF6 | (5.31±0.17)e-5 | 4.147-4.191 | (6.28-6.68)e-6 |
CJPL7 | (3.53±0.23)e-6 | 6.012-6.104 | (4.66-5.27)e-7 |
SNOLab8 | (3.31±0.09)e-6 | 6.083-6.120 | (4.56-4.79)e-7 |
• Measured total muon flux at detector site as referenced; Calculated equivalent flat overburden and neutron flux after Mei and Hime (2006) Phys. Rev. D73, 053004; arXiv:astro-ph/0512125
1. E.-I Esch et al. (2005) NIM A538, 516; arXiv:astro-ph/0408486
2. W.H. Trzaska et al. (2019) Eur. Phys. J. C79, 721; arXiv:1902.00868
3. M. Robinson et al. (2003) NIM A511, 347; arXiv:hep-ex/0306014
4. N.Y. Agafonova et al. (2019) Phys. Rev. D100, 062002; arXiv:1909.04579
5. T. Enqvist et al. (2005) NIM A554, 286; arXiv:hep-ex/0506032
6. N. Abgrall et al. (2017) Astropart. Phys. 93, 70; arXiv:1602.07742
7. Z. Guo et al. (2021) Chin. Phys. C45, 025001; arXiv:2007.15925
8. B. Aharmin et al. (2009) Phys. Rev. D80, 012001; arXiv:0902.2776
The lunar crust flux model is described in S.T. Dye and A.M. Barna (2024), Lunar antineutrinos and heat: Fluxes from primordial radioactivity arXiv:2406.008822. Known bug: Plot download on some browsers fails on the first try but succeeds on the second.